An interval Kalman filter–based fuzzy multi-sensor fusion approach for fault-tolerant heading estimation of an autonomous surface vehicle
نویسندگان
چکیده
This article presents a novel fuzzy–logic based multi-sensor data fusion algorithm for combining heading estimates from three separate weighted interval Kalman filters to construct a robust, fault-tolerant heading estimator for the navigation of the Springer autonomous surface vehicle. A single, low-cost gyroscopic unit and three independent compasses are used to acquire data onboard the vehicle. The gyroscope data, prone to sporadic bias drifts, are fused individually with readings from each of the compasses via a weighted interval Kalman filter. Unlike the standard Kalman filter, the weighted interval Kalman filter is able to provide a robust heading estimate even when subject to such gyroscope bias drifts. The three ensuing weighted interval Kalman filter estimates of the vehicle’s heading are then fused via a fuzzy logic algorithm designed to provide an accurate heading estimate even when two of the three compasses develop a fault at any time. Simulations and real-time trials demonstrate the effectiveness of the proposed method.
منابع مشابه
Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملA New Fault Tolerant Nonlinear Model Predictive Controller Incorporating an UKF-Based Centralized Measurement Fusion Scheme
A new Fault Tolerant Controller (FTC) has been presented in this research by integrating a Fault Detection and Diagnosis (FDD) mechanism in a nonlinear model predictive controller framework. The proposed FDD utilizes a Multi-Sensor Data Fusion (MSDF) methodology to enhance its reliability and estimation accuracy. An augmented state-vector model is developed to incorporate the occurred senso...
متن کاملFault Tolerant Navigation of USV using Fuzzy Multi-sensor Fusion
This report presents a fuzzy multi-sensor data fusion process for combining heading estimates from three separate Kalman filters with the aim of constructing a fault tolerant navigation system for the Springer Uninhabited Surface Vehicle (USV). A single gyroscopic unit and three independent compasses are used to acquire data onboard the vessel. The inertial data from the gyroscope is combined i...
متن کاملA Fuzzy Logic Based Multi-sensor Navigation System for an Unmanned Surface Vehicle
This paper investigates the implementation of three variations of fuzzy logic based Kalman filters namely centralized, decentralized and federated. These fuzzy logic adaptive Kalman filter (FLA-KF) algorithms are implemented in an unmanned surface vehicle (USV) application. Simulation results demonstrate the algorithms’ capabilities under different types of sensor faults and the results are com...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کامل